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Abstract. Based on the mean-field treatment and Monte Carlo simulation, we studied the nature of the
dynamic phase transition of two and three-dimensional magnetic films in Heisenberg model. The time
averaged magnetization components (mx, my, mz),the average hysteresis-loop area components A for
magnetic films with different thickness have been calculated. The dynamic transition phase diagrams from
Q = (1/τ )

∮
m(t)dt �= 0 to Q = 0 for the 2D and 3D cases have been obtained. The relaxation times for

different values of magnetic field, temperature, thickness of the films and the orientation number of spin
have been simulated. It is found that the loop area follows the scaling relation, A − A0 ∝ Hα

0 ωβT−γ , and
the exponents β and γ increase with increasing thickness, while the exponent α decreases with increasing
thickness. It was observed that the phase boundary line shrinks inward in the H0-T plane with decreasing
value of the frequency of the magnetic field and thickness of multilayer film. The phase diagrams were
explained by the competition between the relaxation time and the period of the external magnetic field.
Moreover, it has been indicated that the dynamical behaviors for 2D and 3D cases derived by both mean-
field method and Monte Carlo method in this work are consistent.

PACS. 75.60.Ej Magnetization curves, hysteresis, Barkhausen and related effects – 75.40.Mg Numerical
simulation studies – 73.21.Ac Multilayers – 75.30.Kz Magnetic phase boundaries (including magnetic
transitions, metamagnetism, etc.)

1 Introduction

Hysteresis is a characteristic of nonequilibrium phe-
nomenon for metastable systems. If the applied magnetic
field varies periodically in time, H(t) = H0 sinωt, the sys-
tem is driven back and forth across a first-order phase
transition at H = 0. As a result, m(t) lags behind H(t),
and the hysteretic effect takes place. The areas of the hys-
teresis loop, A =

∮
m(H)dH , as functions of the ampli-

tude H0,frequency ω and temperature T have been studied
in theory and experiment. Theoretical studies of hystere-
sis have been performed with several models [1–9], i.e.
the mean-field treatments with Ising model [2–5], Monte
Carlo simulations with Ising model [1,4–7], and O(N) type
model [8,9]. The simulated average hysteresis-loop area
showed a power scaling law, (A−A0) ∝ Hα

0 ωβT−γ, where
α, β and γ were the exponents depending on the dimen-
sionality and symmetry of the system. However, differ-
ent values of the exponents are predicted from various
models. Recently, this scaling relation for the hysteresis
loop area has been measured for several ultrathin and
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thin ferromagnetic film systems, such as, Fe/Au(001) [10],
Fe20Ni80 [11], Co/Cu(001) [12,13], Fe/GaAs(001) [14] and
Fe/W(110) [15] etc. The observed power scaling law in
the experiments mentioned above was, in general, con-
sistent with the simulated one [1–9]. However, there is
much disagreement between theory and experiment for
the values of the exponents α, β and γ. The disagree-
ment may be attributed to the over-simplified treatment
for the spins in Ising model. On the other hand, the dy-
namical behavior in Heisenberg model was simulated with
Monte Carlo method [16,17]. Especially, Acharyya stud-
ied a off-axial dynamic symmetry breaking in uniaxially
anisotropic Heisenberg ferromagnet and found that the
transition temperature increases with the increase of the
strength of anisotropy. However, no report appears in lit-
erature for the dynamical behavior from the mean-field
treatment with Heisenberg model. So it is worth to in-
vestigate systematically the dynamical behaviors of the
systems with Heisenberg model. In this paper, we focus
on the nature of the dynamic phase transition of two and
three-dimensional magnetic films with Heisenberg model
using both the mean-field and Monte Carlo methods. The
scaling exponents α, β and γ, and the dynamic phase
diagrams for the magnetic films with different thickness,
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frequency were investigated. The consistency of the results
obtained from the mean-field method and Monte Carlo
method is achieved, and the results agree generally with
the reported experimental ones.

2 Model and simulation technique

By considering the classical Heisenberg exchange interac-
tions between the spins in the L×L×LN multilayer film
in a magnetic field, the Hamiltonian of the system can be
expressed as

H = −J
∑

〈ij〉

−→
S i · −→Sj − K

∑

i

(Sz
i )2 −−→

H (t) ·
∑

i

−→
S i (1)

where
∑

〈ij〉 is performed over all the spin pairs at nearest-
neighbor sites i and j with the exchange interaction J.
K means the uniaxial anisotropy constant.

−→
H (t), align-

ing along the z axis, is the sinuous applied field,
−→
H (t) =−→

H ′
0 sin ωt.

∣
∣
∣
−→
S i

∣
∣
∣ = 1 was set. J was taken as the unit of the

temperature and energy, let K = 1. It was assumed that
L×L×LN multilayer films have the simple cubic lattices
with L = 20 and LN , the number of the layers, variable.
The periodic boundary conditions were applied in x and
y axes. Meanwhile, the three-dimensional (3D) bulk was
defined as a L×L×L cube with L = 20 and the periodic
boundary conditions in x, y and z axes were assumed.

Monte Carlo method with the metropolis algorithm
for a classical Heisenberg system has been described in
detail in [18–22]. In reference [22], different algorithms,
such as the small trial step (STS), the uniform trial step
(UTS), the reflection trial step (RTS) and the combined
sampling were considered and it is found that the sim-
ulated results with UTS-algorithm are almost same as
those with the combined sampling for the moderate value
of anisotropy. In our simulation, UTS MC algorithm was
used. One Monte Carlo step (MCS) is defined as a flip for
every spin at the lattice sites, which is considered as the
unit of the time in this simulation. For the numerical con-
venience, the magnetic field evolves periodically in a step-
like sinuous fashion, which is similar to what described
in [8]. It was defined that there are two time scales with
unit in MCS for the sinuous magnetic field. One is Nm,
the interval of time over which the field is a constant, an-
other is τ = Nm × Nl [17], the period of the magnetic
field. Here, Nl means the number of intervals in a period
of the magnetic field. In the simulation, let Nl = 192. We
started from a random configuration in the high tempera-
ture region and had the system cooled quasicontinuously
down to a measured temperature with zero magnetic field
at a constant temperature step T = −0.05˜–0.1. 400 MCS
were performed at each temperature. Then, the hystere-
sis loops were computed by starting from a demagnetized
state at H = 0 and increasing quasicontinuously the mag-
netic field to H′

0, then decreasing to −H ′
0. In order to get

the stabilized states, the former 10 complete cycles of the
oscillating field were discarded and the averages of various

physical quantities were calculated from further 10 com-
plete cycles.

The time averaged magnetization (over the complete
cycle of the oscillating magnetic field), Q = (1/τ)

∮
m(t)dt,

defines the dynamic order parameter [1,2,23], which was
calculated for each period of the magnetic field. The mag-
netization m(t) with a 200τ time series has been mea-
sured. For each temperature, the value of Q correspond-
ing to each of the 200 cycles was calculated. Thus, based
on those 200 different values of Q, the normalized statis-
tics distribution P (Q) with

∫
P (Q)dQ = 1 can be ob-

tained. The fourth-order cumulation is defined as UL =
1.0 − 〈Q4〉/3〈Q2〉2, where 〈Qn〉 =

∫
QnP (Q)dQ.

Next, we considered the mean-field treatment. The en-
ergy Ei at ith spin in the system with the classical Heisen-
berg model can be expressed as [24]

Ei = −−→
S i · −→H eff (2)

where

−→
H eff = J

∑

j{nn}

−→
Sj + K

(−→
S i · −→u i

)−→u i +
−→
H (t). (3)

In the mean-field approximation, the first term in equa-
tion (3) can be approximately replaced by

J
∑

j{nn}

−→
Sj = Za−→m (4)

where Z is the coordination number, a is a coefficient.
Z = 6 and 4 correspond to three and two-dimensional
(3D and 2D) cases for the simple cubic structure, respec-
tively. According to the kinetic Bethe-Peierls approxima-
tion (KBPA) [4,25,26], the mean-field equation of motion
of the average magnetization can be described by

τt
d−→m
dt

=
∑

i

−→
∆i

∑

si∈∆

n
(−→

S i,
−→m

)
e−Ei(

−→
S i)/(kBT ′) (5)

where τt is the microscopic (single spin-flip) relaxation
time;

−→
∆i =

−→
S i−

∑
i

−→
S i/N =

−→
S i−−→m, meaning the change

in the state of the system associated with a spin flip event;
n(
−→
S i,

−→m) is a combinatorial factor, which is the BPA to
the number density of sites with local arrangements of
spins

−→
S i compatible with

−→
∆ i given as the system average

magnetization is fixed at −→m. It is reasoanable to assume
that

n(
−→
S 1,

−→m) = n(
−→
S 2,

−→m) = · · · = n(
−→
S N ,−→m)

=
1

∑
i e−Ei/(kBT )

(6)

where
−→
S 1,

−→
S 2, · · ·,−→S N are the orientations of the spin at

every site, respectively.
−→
S i was chosen according to

−→
S i =

(
l1
−→
i + l2

−→
j + l3

−→
k

)
/

(
l21 + l22 + l23

)0.5
(7)
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where li(i = 1, 2, 3) = −n,−(n−1),· · ·, (n−1), n. Thus the
number of orientations N for

−→
S i is equal to (2n+1)3 − 1.

From equations (5) and (6), we can get

τt
d−→m
dt

= −−→m +
∑

i

−→
Sie

−Ei/(kBT ′)
∑

i e−Ei/(kBT ′) (8)

equation (8) can be rewritten as

�
d−→m
dζ

= −−→m +
∑

i

−→
Sie

−Ei/T

∑
i e−Ei/T

(9)

where

Ei = −−→
S i · [Z(mx

−→
i + my

−→
j + mz

−→
k )

+ k(
−→
S i · −→u i)−→u i +

−→
H 0 sin(ζ)] (10)

where k = K/a,
−→
H 0 =

−→
H ′

0/a, T = kBT ′/a, � = ωτt

and ζ = ωt. It was assumed that a is used as unit of
temperature and energy, and let a = 1. In the calculation,
it was assumed that −→u i and

−→
H 0 are all along z axis, and

let k = 1.0.

3 Simulated results and discussion

3.1 Monte Carlo simulation

In the simulation with Monte Carlo method, the hystere-
sis loops of multilayer films with K = 1, LN = 1, 3, 5,
7 and 3D bulk at different values of Nm(τ), H0 and T
were calculated. Figures 1a and b show the typical loops
of multilayer films with LN = 3, H0 = 4.8, Nm = 2,
50, 100, 300, 500, 1000, for T = 0.1, 0.5, respectively. As
observed, at lower temperature (T = 0.1) an asymmet-
ric loop (Q > 0) exists for τ = 384 (Nm = 2); while for
higher values of τ and higher temperature the symmetric
loops are revealed. Moreover, it can be noted that the hys-
teresis loop areas increase with decreasing value of τ and
temperature. Figure 2 shows the typical hysteresis loop ar-
eas as function of temperature with LN = 3, τ = 19 200,
H0 = 0.6, 1.2, 2.4, 4.8, 7.2, 9.6, 12.0 and 14.4, respec-
tively. Obviously, for the low values of H0 (H0 = 0.6, 1.2
and 2.4) there is an abrupt change for the loop area, in-
dicating a phase transition for Q from non-zero to zero.
The areas of the hysteresis loops decrease with increasing
temperature due to the decrease of the magnetization and
coercivity as temperature is increased. Similarly, the rela-
tions between the hysteresis loop area and the frequency
and amplitude of H(t) for LN = 3 have also been calcu-
lated for different temperatures. Figure 3 shows the Ln-Ln
plots of the areas to the field amplitude for τ = 19 200 and
T = 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.5, respectively. It can be
found that the value of Ln(A-A0) increases linearly with
increasing magnitude of Ln(H0), which indicates an area
scaling behavior (A-A0) ∝ Hα

0 . The slops of the straight
lines yield the scaling exponent α = 0.38 ± 0.02, which

Fig. 1. The typical loops of multilayer film with LN = 3,
H0 = 4.8, Nm = 2, 50, 100, 300, 500, 1000, at (a) T = 0.1
and (b) T = 0.5, respectively.

Fig. 2. The typical hysteresis loop areas as a function of tem-
perature with LN = 3, τ = 19 200, H0 = 0.6, 1.2, 2.4, 4.8, 7.2,
9.6, 12.0 and 14.4, respectively.

is, within error, independent of the temperature and fre-
quency of the applied field. Shown in Figure 4 is the Ln-
Ln plots of the loop area to the field frequency (1/Nm)
for H0 = 4.8, T = 0.2, 0.5, 1.0, 1.5, 1.8, respectively.
Clearly, the value of Ln(A-A0) increases linearly with in-
creasing magnitude of Ln(1/Nm), which indicates a scaling
behavior, (A-A0) ∝ ωβ = (1/(N · Nm))β , where N = 192.
Similarly, the scaling exponent β was found as 0.41±0.02.
Figure 5 shows the Ln-Ln plots of the area to temperature
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Table 1. The simulated exponents α, β and γ simulated by Monte Carlo (MC), Mean-field (MF), O(N), (Φ2)2, and
Landau-Ginzberg Hamiltonian methods, and the measured those from experiments.

Method Thickness α β γ

MC
Heisenberg

LN = 1(2D) 0.40± 0.02 0.38 ± 0.03 0.30 ± 0.02

This work

LN = 3 0.38± 0.02 0.41 ± 0.02 0.60 ± 0.02

LN = 5 0.30± 0.02 0.45 ± 0.04 0.74 ± 0.02

LN = 7 0.30± 0.02 0.48 ± 0.04 0.77 ± 0.02

3D 0.30± 0.02 0.50 ± 0.03 0.80 ± 0.02

MF Heisenberg
(ω < ωmin)

2D 0.55 ± 0.04 0.40 ± 0.02 0.25 ± 0.02

This work
3D 0.40 ± 0.04 0.60 ± 0.02 0.70 ± 0.02

MF Heisenberg
(ω = ωmin ∼ ωmax)

2D 1.35 ± 0.1 0.25 ± 0.03 0.25 ± 0.02

3D 0.95 ± 0.05 0.25 ± 0.03 0.70 ± 0.02

MC
Ising

2D 0.70 0.36 1.18

[6]3D 0.67 0.46 1.98

4D 0.32 0.52

L-G Hamiltonian
Ising

2D 0.41 ± 0.01
[25]

3D 0.50 ± 0.01

3D O(N) 0.50 0.50 [26]

3D(Φ2)2 0.66 ± 0.05 0.33 ± 0.03 0.7 [3,8,9]

Ni-Fe (Exp.) Thickness = 200 Å 0.900 ± 0.002 0.800 ± 0.002 0.38 ± 0.01 [11]

Fe-Au (Exp.) 1.5 ∼ 3.3 ML 0.59 ± 0.07 0.31 × 0.05 [10]

Co-Cu (Exp.) 3.0 ML 0.67 ± 0.01 0.67 ± 0.03 [12]

Fig. 3. The Ln-Ln plots of the hysteresis loop areas to the
field amplitude for τ = 19 200, T = 0.1, 0.2, 0.3, 0.5, 0.7, 1.0,
1.5, respectively.

for H0 = 4.8, Nm = 4, 10, 50, 100, 500, 1000, respectively.
The linear variation of Ln(A-A0) versus Ln(T ) yields the
scaling exponent γ = 0.60±0.02. In low frequency and low
temperature regions, especially for Nm = 4, 10, the devi-
ation from the linearity is attributed to the appearance of
the phase with Q �= 0, as seen in Figure 5. Furthermore,
the hysteresis loops and their areas of multilayer films for
LN = 1, 5, 7 and 3D have also been calculated and the
scaling relations, (A-A0) ∝ Hα

0 ωβT−γ, were obtained. For
summary, the simulated exponents α, β and γ to system
with different thickness are listed in Table 1.

Fig. 4. The Ln-Ln plots of the hysteresis loop areas to the
field frequency (1/Nm) for H0 = 4.8, T = 0.2, 0.5, 1.0, 1.5,
1.8, respectively.

3.2 Calculation on mean-field equation of motion

In solving equation (9) by the fourth–order Runge-Kutta
method, 11 periods were considered. Discarding the first
5 periods, the stationary solutions, the instantaneous val-
ues of the magnetization components Mx(ζ), My(ζ) and
Mz(ζ), were calculated as the parameters T , H0 and �
were taken at the fixed values. It was observed that the
magnitude of n influences evidently the solutions of equa-
tion (9), Mx(ζ), My(ζ) and Mz(ζ). However, it has been
found that, when n ≥ 8, the solutions Mx(ζ), My(ζ) and
Mz(ζ) hardly depend on the value of n and arrive at
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Fig. 5. The Ln-Ln plots of the hysteresis loop areas to the
temperature for H0 = 4.8, Nm = 4, 10, 50, 100, 500, 1000,
respectively.

 
 

Fig. 6. The typical value of A as a function of � for z = 6,
k = 1, H0=4.0.

the stationary values. In the calculation, only the case for
n = 10 was studied typically. Figure 6 shows the typical
value of A as a function of � for z = 6, k = 1, H0 = 4.0.
From the figure, it is found that there exists a complicated
relation between A and �. Here, we focused on the low
frequency region. The A ∼ � curve corresponds to dif-
ferent scaling relations in different frequency regions. As
shown in insets (a) and (b) of the figure, as � is between
�min ∼ �max, the scaling relation, (A-A0) ∝ �β , with
β = 0.25 ± 0.02 is obtained; while as � < �min, the scal-
ing relation with β = 0.60± 0.06 is observed. Here �max,
�min are the high and low limits of the frequency for β be-
ing kept as a constant within error, respectively. Figure 7
shows the typical hysteresis loop area A as function of
T−γ for z = 6, H0 = 1.0 and 2.0, � = 0.1 and 0.2, respec-
tively. The linear variation of (A-A0) versus T−γ yields
the scaling exponent γ = 0.70 ± 0.05 for low frequency
region, which is independent of the values of � and H0

within error. Shown in Figures 8a and b, are the typical
hysteresis loop area A as a function of Hα

0 for z = 6,
T = 2.0, 2.2 and 2.4, � = 0.1, 0.12 (� < �min), and
� = 0.14, 0.16, 0.20 and 0.24 (� = �min ∼ �max), re-

Fig. 7. The typical hysteresis loop area A as a function of T−γ

for z = 6, H0 = 1.0 and 2.0, � = 0.1 and 0.2, respectively.

Fig. 8. The typical hysteresis loop area A as a function of Hα
0 .

(a) for z = 6, T=2.0, 2.2 and 2.4, � = 0.1, 0.12 (�<�min);
(b) for z=6, T=2.0, 2.2 and 2.4, and � = 0.14, 0.16, 0.20 and
0.24 (�=�min ∼ �max), respectively.

spectively. The linear variations of (A-A0) versus Hα
0 yield

the scaling exponents α = 0.40 ± 0.04 for � < �min and
α = 0.95 ± 0.05 for � = �min ∼ �max, which is indepen-
dent of the values of � and T within error. Similar scaling
behavior for z = 4 has also been observed and the scaling
exponents α, β and γ are listed in Table 1.

From Table 1, it is found that exponents β and γ in-
crease with increasing thickness. In contrast, exponent α
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decreases with increasing thickness. Moreover, it can be
found that with mean-field method and Monte Carlo
method the values of β and γ for 2D and 3D cases are
in agreement. For lower frequency (� < �min), the val-
ues of α for 2D and 3D cases from mean-field method
are near to those from Monte Carlo. However, for � =
�min ∼ �max, the values of α from the mean-field method
are much larger than those from Monte Carlo method,
which will be studied further. The above scaling behav-
iors are similar to those for Ising model and experimental
results [1–15,17,27]. The trend of changes of α, β and γ
with the dimension number in Heisenberg model is simi-
lar to that in other models [3,6,28–30]. As the dimension
is changed from 2D to 3D, the value of α is decreased
from 0.40 to 0.30 (MC) or 0.55 to 0.40 (MF) in Heisen-
berg model, which is similar to that it is reduced from 0.70
to 0.67 in Ising model. Similarly, the value of β increases
from 0.38 to 0.50 (MC) or 0.40 to 0.60 (MF) in Heisenberg
model, which is similar to that it does from 0.36 to 0.45 in
Ising model too. The magnitude of γ increases from 0.30
to 0.80 (MC) or 0.25 to 0.70 (MF) in Heisenberg model,
further consistent with the change trend from 1.18 to 1.98
for Ising model [6]. However, the values of γ from Ising
model are much larger than those from Heisenberg model.
Although the magnitudes of the scaling exponents α, β
and γ obtained from different models and experiments
are quite different, the obtained results in this work are
self-consistent. The values of β (β = 0.25 ∼ 0.60) are con-
sistent with the experiment scaling exponents, β = 0.31
in an Fe/Au(001) [10], β = 0.325 ∼ 0.399 at high sweep
rates in expitaxial Fe/GaAs(001) [14], and the theoretical
predictions for a continuous spin system, such as β = 0.5
in [28–30] and β = 0.33 [3]. Similarly, the values of α
(α = 0.30 ∼ 0.55) for low frequency region are consis-
tent with the experiment scaling exponents, α = 0.59 in
an Fe/Au(001) film [10], α = 0.67 in Co/Cu(001) thin
films [12], α = 0.25 in Fe/W(001) thin films [13] and the
theoretical predictions for a continuous spin system,such
as α = 0.5 in [28–30] and α = 0.67 [3]. Also, the values
of γ (γ = 0.30 ∼ 0.80) are consistent with the experiment
scaling exponents, γ = 0.38 in an Cu/Ni80Fe20/Si(001)
film [11], and the theoretical predictions γ = 0.7 for a
continuous spin system [3,8,9].

3.3 Phase diagram and relaxation time

In Monte Carlo simulation, a minimum in UL ∼ T curve
is used as a criterion of the transition between Q �= 0 and
Q = 0. The simulated deep minima in UL ∼ T curves
for various τ , H0 and LN have been obtained, indicating
a transition of first-order with the transition point from
Q �= 0 to Q = 0 at minimum. Figure 9 shows the dy-
namic phase transition diagrams for the multilayer films
with LN = 1, 3, 5 and 3D, τ = 100, 1000 and 19 200,
respectively. In mean-field calculation, Mz(ζ)-H loop is
asymmetric at low temperature and correspondent Q �= 0,
while at higher temperature Mz(ζ)-H loop is symmetric
and Q = 0. A dynamic transition temperature T

C
is de-

fined by the position of peak in the dQ/dT − T curve.

 
      

 
 

   
          

Fig. 9. The dynamic phase diagrams obtained with MC sim-
ulation for the multilayer films with LN=1, 3, 5 and 3D,
τ1 = 100, τ2 = 1000 and τ3 = 19 200, respectively.

 
 
 

Fig. 10. The phase transition diagrams obtained with MF cal-
culation with � = 0.2 and 1.0 for the 2D and 3D cases, respec-
tively.

According to the value of Tc, the phase transition dia-
grams, indicating the regions of Q �= 0 and Q = 0, for
H0-T with � = 0.2 and 1.0 for the 2D and 3D cases are
shown in Figure 10, respectively. From Figures 9 and 10,
it is found that the phase diagram derived by mean-field
method is consistent with that by Monte Carlo method,
and in the H0-T plane the phase boundary line shrinks
inward with decreasing value of ω (=1/τ) and �, which is
similar to those in Ising model [6]. Also, it is observed that
the phase transition curves shift to the right as the multi-
layer number LN increases or the dimensionality changes
from two to three.

Now we explain the phase diagrams based on the com-
petition between the intrinsic relaxation lifetime (or effec-
tive time lag) τr [6] and the period of the external mag-
netic field τ(∼ 2π/ω). The relaxation time is described by
the expression τr = τr0 exp(∆U/kBT ) with ∆U=KV [1-
(H + Hint + λM)/Hc]2 [31–33]. Here, H , Hint and λM
are the applied magnetic field, the local interaction field
and the mean field, respectively. So the relaxation time τr

is associated with the magnetic interaction, the applied
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Fig. 11. The magnetization as a function of time for the films, (a) for LN = 3, n = 10, H = −1.0, T = 0.30–0.70; (6) for
LN = 5, n = 10, T = −0.6, H = −0.5, –1.0, –2.0, –4.0; (c) for T = 0.60, n = 10, H = −1.0, LN = 1, 2, 3, 5, 10, 20; (d) for
LN = 1, T = 10, H = −1.0, n = 1, 2, 3, 5, 10, 20, respectively.

field, the temperature and the anisotropy in the films. It
was assumed that the initial state of spin at every site for
the films is Sz = 1. When a magnetic field H along −z axis
is applied, the magnetization of the film will gradually ori-
entate along −z axis with increasing time (unit in MCS).
The relaxation time was taken as time in which the mag-
netization is changed from +1 to + exp(−1). In order to
study the influence of the orientation number n on the re-
laxation time, the orientations of the spin determined by
equation (7) were used in updating the spin configuration.

Figure 11a–d show the magnetization as a function of
time (unit with MCS in MC simulation) for the films with
different temperature T , magnetic field H , thickness LN
and orientation number of spin n, respectively. From the
figure, it can be found easily that the relaxation time de-
creases with increasing values of T , H , n and with de-
creasing coordinate number (or LN), which is similar to
those in Ising model [34–36]. The phase boundary line can
be considered as a result of the competition between the
relaxation time τr and the period of the external mag-
netic field τ . When τr is less than τ , there is enough time
for the magnetization to change its sign, and consequently
the symmetrical hysteresis loop can appear and Q = 0. In
contrast, the magnetization can not fully change its sign
due to with no enough time when τr is larger than τ , con-
sequently the asymmetrical hysteresis loop can be found
and Q �= 0. For the same ω(�), n and z, it is assumed that
the value of τr is always equal to the fixed value of τ at
the same boundary line. Thus, when the temperature de-

creases, the value of H0 has to increase in order to remain
the value of τr to be unchanged. Therefore, the value of τ
increases sharply with decreasing temperature in the low
temperature region and consequently the value of H0 has
to rise rapidly. The large slope of the boundary curves at
low temperature, as seen in Figures 9 and 10, can be ex-
plained satisfactorily. For the same H0, n and z, the larger
the value of �, the less the magnitude of τr is. So the phase
boundary line with the larger value of � need to shift to
higher temperature region for the less relaxation time. In
order to keep the value of τr to be unchanged, the increase
of τr resulted from higher z has to be compensated by
the increasing temperature. Therefore, for the same H0, n
and �, the phase boundary line with the large value of z
should shift to the higher temperature region.

4 Conclusion

In conclusion, the mean-field equations of motion of the
magnetization with Heisenberg model were established.
The dynamic scaling behavior and phase transition of
the two and three-dimensional Heisenberg magnetic films
were studied by the mean-field treatment and Monte Carlo
simulation. The dynamic transition phase diagrams H0-T
from Q = 0 to Q �= 0 for the 2D and 3D cases were ob-
tained. The scaling exponents α, β and γ for the magnetic
films with different thickness were obtained. It is found
that the exponents β and γ increase with increasing thick-
ness. In contrast, the exponent α decreases with increasing
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thickness. Moreover, the values of β, γ and α (in lower fre-
quency) for 2D and 3D cases obtained by the mean-field
method are consistent with those by Monte Carlo method.
The scaling behaviors are similar to those for other mod-
els reported, and give consistent results. It is found that
the phase boundary line in the H0-T plane shrinks inward
with decreasing value of ω (=1/τ), � and thickness of
multilayer film. MC simulated results indicated that the
relaxation time decreases with increasing values of T , H ,
n and with decreasing coordinate number (or LN). The
phase diagrams have been explained satisfactorily from
the competition between the relaxation time τr and the
period of the external magnetic field τ .
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